Cooperative interaction of oestrogen receptor 'zinc finger' domain polypeptides on DNA binding.

نویسندگان

  • P F Predki
  • B Sarkar
چکیده

The consensus oestrogen response element (ERE) contains two inverted copies of an AGGTCA consensus hexameric half-site, spaced by three base pairs. It differs from many other hormone response elements, such as consensus thyroid (TREp) and retinoic acid (DR-5 RARE) response elements, only in the relative spacing and orientation of these sequences. In the present study we report values for cooperativity (omega) of an oestrogen receptor DNA-binding domain polypeptide upon binding to these sequences. The polypeptide binds with negative cooperativity, or without cooperativity to retinoic acid and thyroid response elements respectively, but with high cooperativity to the ERE. We have also examined cooperativity upon binding of the polypeptide to an ERE variant. Since naturally occurring EREs commonly contain one hexamer which is considerably more degenerate than the other, we designed a hybrid response element in which one hexamer is a consensus ERE, while specific mutations were introduced into the other. We chose to mutate the second half-site to a glucocorticoid response element (GRE) half-site sequence (AGAACA), since normally no binding of the DNA-binding domain polypeptide to a GRE hexamer alone can be detected. In the hybrid response element, however, the GRE half-site is recognized with relatively high affinity, although binding to this sequence is dependent on the previous binding of a polypeptide to the ERE hexamer. Thus, cooperative interactions are capable of mediating the recognition of ERE sequence degeneracy. The ability of protein-protein interactions to mediate recognition of DNA sequence degeneracy may also have implications for transcription factors in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal replacement in "zinc finger" and its effect on DNA binding.

Metal replacement studies were used to investigate the metal requirement of a bacterially expressed polypeptide encoding the zinc finger DNA binding domain of the estrogen receptor. Apopolypeptide was generated by dialysis of native polypeptide against low-pH buffer under reducing conditions. Specific DNA binding can be restored by refolding the apopolypeptide in the presence of ionic zinc, cad...

متن کامل

A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain

HIV-1 integrase catalyzes the insertion of the viral genome into chromosomal DNA. We characterized the structural determinants of the 3'-processing reaction specificity--the first reaction of the integration process--at the DNA-binding level. We found that the integrase N-terminal domain, containing a pseudo zinc-finger motif, plays a key role, at least indirectly, in the formation of specific ...

متن کامل

Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins.

Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker bind...

متن کامل

Chimeric receptors used to probe the DNA-binding domain of the estrogen and glucocorticoid receptors.

Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements. The DNA-binding domain (termed region C) is a highly conserved 66-amino acid region that contains two subregions (CI and CII) analogous to the "zinc fingers" of transcription factor IIIA. Using chimeric estrogen receptors, ...

متن کامل

Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1.

Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 305 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1995